
Barycentric Lagrange

Let’s work on evaluating the Lagrange interpolator with knots in the xy-plane. Here we
have n+1 nodes: x0 < x1 < . . . < xn, and n+1 knots: (xi, yi), i = 0:n. The vector of
y-values may just be data, or we may know that yi = f(xi) for some function f . The
Lagrange interpolator of degree n (or less) for a function f on these knots gives

f = P +R, where P =
n∑

i=0

yjLnj, and R is the truncation error,

and we want to find the number P (x), for some x ∈ R (maybe many such values).

Each Lagrange basis function, Lnj, is a polynomial of degree n, and we have n+1 of them to
evaluate, so it looks like about 2n2 flops are required. We’ll rewrite P in a way that cuts
this to about n2/2 flops. We begin by noting that the denominator of Lnj is a scalar which
only depends on the nodes:

Lnj(x) =
n∏

i=0,i ̸=j

x− xi

xj − xi

≡ wj

n∏
i=0,i ̸=j

(x− xi), with wj =
1∏n

i=0,i ̸=j(xj − xi)
.

If we let l(x) =
∏n

i=0(x− xi) (which doesn’t depend on f) , then

Lnj(x) = wj
l(x)

x− xj

and thus P (x) =
n∑

j=0

yjwjl(x)

x− xj

.

Noticing that l(x) is common to all terms, we can write

P (x) = l(x)
n∑

j=0

yjwj

x− xj

.

While this is a good starting point for computing P (x), we can push it a bit further by
using the Lagrange interpolator on these nodes for the function g(x) ≡ 1. The yj for this g
are yj = 1, j = 0:n, and since g is a polynomial of degree ≤ n, its interpolator is g itself
(there is no remainder). This gives the identity

l(x)
n∑

j=0

wj

x− xj

= 1 for all x.

Dividing P (x) by 1 (and cancelling the l(x) factors) gives the Barycentric form of the
Lagrange interpolator:

P (x) =

n∑
j=0

yjwj

x− xj

n∑
j=0

wj

x− xj

.

This form requires computing the wj’s (which only depend on the knots, but be careful of
over/under-flow), and can be done in about n2/2 flops. After that this Barycentric form
only requires 5n+ 1 flops per evaluation point. There is more to be said if you want to
evaluate P for many points all at once... but that is another course (look up polynomial
evaluation and the FFT and/or Cauchy matrices).


